Ardumower LP

Aus www.wiki.ardumower.de
Version vom 2. Juli 2015, 14:12 Uhr von Amadeus (Diskussion | Beiträge) (Leiterplatten Jumper)

Wechseln zu: Navigation, Suche

Zusammenfassung

Diese Seite beschreibt,wie die Ardumower Hauptleiterplatte aufgebaut wird, wie das Programm auf den Arduino aufgespielt wird, undwie man den Mähroboter konfiguriert.

Kernstück der Steuerung ist ein fertiges Microcontroller-Modul (Arduino Mega 2560 verwendet 54 I/O pins).

Benötigte Module

Alle Module können als komplettes Kit über den shop Shopping.png bezogen werden .

  • Hauptfunktionen
    • Arduino Kabel (female-female and male-female jumper cable)
    • Arduino Mega 2560 (oder Arduino Due)
    • einstellbare DC voltage step-down Module (3.3v, 5v, 8v)
    • zweifach Motortreiber-Modul mit integriertem Stromsensor (2 Antriebsmotoren)
    • Stromsensor Module
    • Motortreiber-Modul mit integriertem Stromsensor (Mähmotor)
    • Widerstände, Kondensatoren, Sicherungen
    • Piezo Buzzer, Taster, Ein/Aus-Schalter
  • Perimeter Sender (optional)
    • Arduino Nano
    • DC voltage step-down Module
    • Motortreiber-Modul mit integriertem Stromsensor
  • Perimeter Emfpänger (optional)
    • Vorverstärker-Module
    • Kondensatoren, Empfängerspulen
  • zusätzliche Module
    • IMU module (Gyro, Beschleunigungssensor. Kompass) (erforderlich)
    • Echtzeituhr (erforderlich)
    • Bluetooth Module (zur Steuerung über Handy/Tablet, empfohlen)
    • Ultraschall-Module(optional)

Hauptleiterplatte

Die Leiterplatte wurde mit folgenden Parametern entwickelt:

  • LP Abmessungen 241x114mm
  • Alle Module (Motortreiber, Bluetooth, usw.) können auf die Leiterplatte gelötet (oder gesteckt) werden (Modules sind im Ardumower-Shop verfügbar)
  • Verwendet den Arduino Mega 2560
  • Optional: kann der Arduino Due mittels zusätzlicher LP-Adapter verwendet werden
  • Optional: integrierter Ladestromkreis (Strombegrenzung)
  • alle Verbindungen, einschliesslich +5V und GND, sind über Steckverbinder realisiert
  • Max. Strombelastung der Leiterbahnen (für Motoren): 8A

Leiterplattenversionen

Roboterplatine v0.5 (1. Prototyp)

Roboterplatine v1.2 (geringe Layoutänderungen)

Roboterplatine PCB v1.3 (in Entwicklung)

  • vereinfachtes Design (Due Adapter werden extern sein)
  • Motorschutzschaltung
  • Batterie-Abschaltung, Sicherheitsschalter
  • setzt 'Referenzdesign' und erfordert die Module: 3x DC/DC, RTC, IMU


Bemerkung: Das Schaltbild und die Platinen-Zeichnungen wurden mit KiCad entwickelt. Sie können hier heruntergeladen github und damit bearbeitet werden KiCAD software.

Leiterplatten Jumper

Feature used YES NO Comment
integrierter Laderegle mit einstellbarem

Spannungsregler (LM350T) mit Potentiomter

für einstellbare Ladespannung (empfohlen: Nein)

D7: DIODE

D3: DIODE

C1, C4, U4, RV1: verwendet

D7: brücken

D3: brücken

C1, C4, U4, RV1: nicht verwendet

Bei externem Ladegerät nicht verwenden
externe Stromversorgung währen des Ladens (empfohlen: Nein) JP6: geschlossen

JP7: offen

D4: DIODE

C5: nicht verwendet

JP6: offen

JP7: geschlossen

D4: brücken

C5: verwendet

um Platine von aussen mit Strom zu versorgen (trennt Akku von Platine) während des Ladens
von Arduino gesteuertes Laderelais (empfohlen: ja) JP4: geschlossen

JP5: offen

JP4: offen

JP5: geschlossen

verwendet für vom Arduino gesteuertem Laderelais (keine automatische Ladung)
Arduino Due (3.3V I/O) LP0, ..., LP15: offen LP0, ..., LP15: geschlossen Nicht verwenden bei Arduino Mega
Bluetooth VCC=3.3V JP8: offen

JP9: geschlossen

JP8: geschlossen

JP9: offen

viele neuere Module laufen mit 3.3V
Bluetooth Programmier-Modus JP2: geschlossen JP2: offen verwendet für Programmierung der BAUD-Rate usw.

PCB modules

Module Feature Pinout Optional Comment
U1 DC/DC converter (10V) GND, Vout, Vin, GND No
U2 Bluetooth (HC-05) VCC, GND, TXD, RXD, Key, LED Yes
U3 Current sensor (charging) VCC, GND, OUT, IP+, IP-5 Yes
U4 Charge control (LM350T) AJD, OUT, IN Yes
U5 Current sensor (charging) VCC, GND, OUT, IP+, IP-5 Yes
U6 DC/DC converter (3.3V) GND, Vout, Vin, GND No
U7 DC/DC converter (5V) GND, Vout, Vin, GND No
U8 Realtime clock (DS1307) Batt, GND, VCC, SDA, SCL, DS, SQ Yes
U9 Wifi (ESP8266) TX, CH_PD, Reset, VCC, GND, GP_IO2, GP_IO0, RX Yes
U10 Level shifter 5V->3V (Arduino Due) Yes
U11 Wifi (ESP8266) TX, CH_PD, Reset, VCC, GND, GP_IO2, GP_IO0, RX Yes alternative mount position

PCB connectors

Connector Feature Pinout Optional Comment
P1 Sonar center (HC SR-04) 5V, GND, Trigger, Echo Yes
P2 Sonar right (HC SR-04) 5V, GND, Trigger, Echo Yes
P3 Sonar left (HC SR-04) 5V, GND, Trigger, Echo Yes
P4 reserved Yes
P5 IMU (gyro,acceleration,compass) (GY-80) Yes
P6 Lawn sensor Yes
P7 Status LEDs Yes
P8 Odometry right Yes
P9 Odometry left Yes
P10 GPS (GY-NEO6MV2) Yes
P11 Bumper GND, GND, right, left Yes
P12 Perimeter coil (center or left) 5V, GND, perimeter Yes
P13 R/C remote control 5V, GND, mow, steer, speed, switch Yes
P14 Measurement points 5V, GND, (Depending on JP15: 3.3V, 5V or Arduino 3.3V) Yes
P15 Wheel motor left M1OUT1, M1OUT2 No
P16 Optional motor driver input Yes Do not connect
P17 Optional motor driver input Yes Do not connect
P18 Wheel motor right M2OUT1, M2OUT2 No
P19 Tilt sensor 5V, GND, tilt Yes
P20 Button (Start/Stop) No
P21 Drop sensor right Yes
P22 Reserved Yes
P23 Reserved Yes
P24 Reserved Yes
P25 Reserved Yes
P26 Reserved Yes
P27 Reserved Yes
P28 Reserved Yes
P29 Reserved Yes
P30 Perimeter coil right Yes
P31 Drop sensor left Yes
P32 GND Yes
P33 5V Yes
P34 3.3V Yes
P35 Mower motor RPM Yes
P36 Reserved Yes
P37 Mower motor No
P38 Reserved Yes
P39 Reserved Yes
P40 User switches Yes
P41 Rain sensor Yes
P42 Charging pins Yes
P43 Battery (24V) No
P44 Wifi module (ESP8266) Yes
P45 Reserved Yes
P46 Reserved Yes

Power supply

Please also read the section 'Voltages' under Motor driver for more information on motor voltages.

It is recommended to use a voltage step-down converter (e.g. module using LM2596) to generate the 5V voltage for the Arduino and all additional modules. Before connecting, set the voltage of the converter to 5V.

Warning.pngWarning : never connect more than 5V on the Arduino 5V pins, or you will damage the Arduino. Therefore, always measure the 5V voltage before connecting it to the Arduino 5V pin! All components together (as shown in the schematics) need about 5W power.

Download and flash Arduino code

NOTE: If you have never worked with Arduino before, read our 'Arduino first steps' introduction.

You have two options:

Finally, download and start the Arduino IDE to flash the code to your Arduino.

Arduino Version: It is very Importent that you use the Arduino IDE version 1.6.3 or above AND select the right Board (Mega 2560 or Due).

Warning.png Note: Always verify that the pin configuration in your Arduino code (config.h/mower.cpp) matches your actual circuit!

First-time calibration

Wheel motors

Warning.pngSecurity note: For security reasons, always remove mower blades in your first tests!

Initially, you should verify that the wheel motors are controlled correctly and in the right direction. The software offers a diagnostic mode. Open the serial console in the Arduino IDE (CTRL+SHIFT+M) and set the baudrate to 19200. The motor and sensor values should appear constantly:

    20 OFF  spd    0    0    0 sen    0    0    0 bum    0    0 son...
    21 OFF  spd    0    0    0 sen    0    0    0 bum    0    0 son...
    22 OFF  spd    0    0    0 sen    0    0    0 bum    0    0 son...
    23 OFF  spd    0    0    0 sen    0    0    0 bum    0    0 son...
    24 OFF  spd    0    0    0 sen    0    0    0 bum    0    0 son...
    ...

Now, press the key ‘t’ on the keyboard, and confirm using ENTER. The diagnostic mode should appear, and you can test your motors.

ADC calibration

Run the ADC calibration once (either via serial console or "pfodApp->ADC Calibration"), so that the received signal is symmetric around zero.

Diagnostics/troubleshooting

Each time a sensor triggers, its corresponding sensor counter increases. The sensor trigger counters as well as the current sensor values can be viewed on the serial console. The following values are shown for the trigger counters in the serial console:

  1. Time of state machine's state (ms)
  2. loop()-counts per second
  3. choosen Verbose-Mode (0=counter readings/1=current values/2=current values)
  4. current state machine state (FORW, REV, ROLL etc.)
  5. drive home? (1/0)
  6. "spd" - Control/speed motors: left (PWM), right (PWM), mower (RPM)
  7. "sen" - Current limit exceeded counter motors: left, right, mower
  8. "bum" - bumper counter: left, right
  9. "son" - Ultrasonic-distance threshold exceeded (counter)
  10. "pit/roll" - Tilt (computed by acceleration sensor)
  11. "com" - compass course
  12. "per" - Perimeter loop detected: counter
  13. "bat" - Battery voltage
  14. "chg" - Charging current

Using the key 'v', you can toggle between sensor trigger counters and current sensor values.

Warning.png Additionally, you can use pfodApp (Android) to plot the sensors (trigger counters and current values) over time. This allows you to wirelessly monitor your robot mower for error diagnostics. It is highly recommended.

Starting the mower

To start the mower, you need to add a button and a buzzer:

pinButton —o Button o— GND (button for ON/OFF)
pinBuzzer —o Buzzer o— GND (Piezo buzzer)

Now, press the button as long as you hear the beeps:

Mode (press button for x beeps):

1 beeps : Normal mowing (using blade modulation if available)
2 beeps : Normal mowing (without blade modulation)
3 beeps : Drive by model remote control (RC)
4 beeps : Drive without mowing
5 beeps : Find perimeter and track it

Error counter / error beeps

If there's a communication problem or another serious problem, the error counter increases. The error counter can be monitored via pfodApp. Additionally, the robot mower will beep when started.

See section Troubleshooting for details on all errors.

I2C bus / error beeps

Several components (Arduino Nano, RTC, IMU, etc.) are communicating via the I2C bus (SDA/SCL wires). These wires should be very short (maybe even twisted) and they should be far away from DC converter and motor drivers. If there's a communication problem, the error counter will increase and robot will beep when started. The error counter can be monitored via pfodApp.

Settings

The robot uses settings that you can adjust for your own robot and environment (via pfodApp or directly in the code). The default settings (factory settings) are stored in the config file 'mower.cpp'.

The settings can be adjusted via Android phone (pfodApp).

Important: If you uploaded a new version into your robot, reset all settings via pfodApp once (Settings->Factory reset). This will delete all existing settings. Old settings can produce malfunction if the internal settings format has changed.

Further links